Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure
نویسندگان
چکیده
We describe the optimum detection procedure to follow in order to measure by atomic interferometry the number of photons present in a cavity by using a Quantum nondemolition scheme. The method we discuss is the one recently introduced by Brune et al.
منابع مشابه
Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملMeasuring the deposited energy from a non-ionizing laser beam in water by digital holographic interferometry
Digital Holographic interferometry is a powerful and widely used optical technique for accurate measurement of variations in physical quantities such as density, refractive index, and etc. In this study, an experimental digital holographic interferometry setup was designed and used to measure the amount of energy changes induced by absorption of radiation from a non-ionizing infrared laser beam...
متن کاملar X iv : q ua nt - p h / 01 11 11 0 v 1 2 1 N ov 2 00 1 Generating and probing a two - photon Fock state with a single atom in a cavity
A two-photon Fock state is prepared in a cavity sustaining a " source mode " and a " target mode " , with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field o...
متن کاملGenerating and probing a two-photon fock state with a single atom in a cavity.
A two-photon Fock state is prepared in a cavity sustaining a "source mode" and a "target mode," with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the...
متن کاملCharacteristics of the Temporal Behavior of Entanglement between Photonic Binomial Distributions and a Two-Level Atom in a Damping Cavity
In the present study, temporal behavior of entanglement between photonic binomial distributions and a two-level atom in a leaky cavity, in equilibrium with the environment at a temperature T, is studied. In this regard, the master equation is solved in the secular approximation for the density matrix, when the initial photonic distribution is binomial, while the atomic states obey the Boltzmann...
متن کامل